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1. INTRODUCTION
The key motivation of the present paper is to propose some other origi-

nal plausible entailment relation that employs conditional probability as
a primitive and is a nontrivial generalization of the classical entailment
relation. Due to the fact that each plausible entailment discussed in this
paper employs probability theory, I use the terms of “plausible entailment”
and “probabilistic entailment” as synonyms. I want my probabilistic en-
tailment relation to be defined simply as classical entailment relation is.
Hence, the proof-theoretic method of truth tables allows me to propose
a variant of the Bayesian account which defines a rational probability mea-
sure of a propositional formula A via its truth table within the framework
of CPL.1 While choosing between a conditional (binary) or an uncondi-
tional (unary) probability as a primitive, I prefer the former due to certain
relevant shortcomings of the latter.

Binary probability functions, also known as conditional probability functions,
are often defined in terms of singulary ones. For example, in (Carnap, 1950,
Kolmogorov, 1956), etc., P (A/B) is set at P (A∧B)/P (B) when P (B) 6= 0, but
otherwise is left without a value. […] Partial functions, however, are unwieldy and—
perforce— of limited service. An alternative approach, favoured by Keynes as
early as 1921 and, hence, antedating Kolmogorov’s, has now gained wide currency,
thanks to such diverse writers as Reichenbach, Jeffreys, Von Wright, Renyi, Carnap
(in post-1950 publications), Popper, etc. Handling binary probability functions as
you would singulary ones, you adopt constraints suiting your understanding of
P (A/B) and then own as your binary probability functions all functions meeting
these constraints.

This representative list of writers lacks Wittgenstein, whose Tractatus Logico-
Philosophicus, published in 1922, defines a binary probability as follows
(a truth-ground is his term for an entry of a truth table, where a formula
is true; the notation is original):

If Tr is the number of the truth-grounds of the proposition “r”, Trs the number
of those truth-grounds of the proposition “s” which are at the same time truth-
grounds of “r”, then I call the ratio Trs : Tr the measure of the probability which
the proposition “r” gives to the proposition “s” (Wittgenstein, 1922: 5.15).

I refer to von Wright’s exposition of the evolution of Wittgenstein’s
accounts of probability and note that the exposition contains a list of

1CPL stands for classical propositional logic.
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19th-century thinkers, including Bolzano, who favor the primitiveness of
conditional probability (von Wright, 1969: 263–265).

At last, while studying the question of extending propositional logic to
a logic of plausible reasoning and positing four requirements that any such
extension should satisfy, van Horn proposes the following argument pro
conditional probability (the italic is mine) (Horn, 2017: 313):

We see therefore that, although it is the conditional probabilities c(h, e) that
most interest Carnap, unconditional probabilities are for him more fundamental.
In contrast, we take conditional plausibilities as the fundamental concept and,
rather than imposing the laws of probability, seek to derive them.

As a result, I obtain a supraclassical probabilistic entailment p≈ relation,
where all classical tautologies and entailments are valid, too, whilst the
opposite is wrong. The obtained probabilistic entailment is anticipated to
lack certain properties in order to avoid the textbook triviality argument that
any supraclassical consequence relation holds. A variant of it is Exercise 1.50
in Mendelson’s classic textbook (Mendelson, 1997: 43). Roughly speaking,
it could be shown that the argument is not p≈-valid, due to its lack of
transitivity.

The price that is paid in order to preserve the nontrivial supraclassicality
is an indefinite position of p≈ in terms of the properties that it has. To clarify
the position, I use some nomenclatures of nonclassical entailment relations
as well as some analysis of their properties. Due to its monotonicity-free,
Hlobil’s shopper’s guide is of invaluable help (Hlobil, 2018). In Section 3.2,
I use his classification in order to specify the position of p≈ with the help of
Douven’s extensive analysis of dozens of properties, which he finds in the
literature devoted to probabilistic entailments (see Section 3.1). Speaking
briefly, it turns out that p≈ is not Hlobil’s favorite nonmonotonic logic, whilst
the number of properties that p≈ holds, according to the Douven analysis,
is quite standard, which makes it a rather weak logic.

In the end, let me address the following referee’s suggestion (the trans-
lation from Russian is mine).

The paper leaves an ambivalent impression. On the one hand, in studying the
properties of plausible (probabilistic) entailment, the author bases his conclusions
on quite important logical results […], i. e., the methodology he employs is well-
grounded. On the other hand, the author chooses the probabilistic entailment as
the object of his analysis, which is based on the method of calculating logical
probability with the help of truth tables that Wittgenstein proposed in Tracta-
tus Logico-Philosophicus. And though Wittgenstein’s idea is attractive with its
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simplicity and clarity, it is commonplace that one cannot formulate an adequate
probabilistic logic on the basis of this idea because I face some difficulties here.
[…] it is not occasionally, therefore, that the method in question is employed
in pedagogy as a rule. However, in the conclusive part of his paper, the author
himself provides a comparative analysis of the original probabilistic entailment
and its alternatives, which belong to certain textbooks on logic rather than
scientific literature. One comes to the conclusion that, speaking metaphorically,
the author uses a sledgehammer to crack a nut.

I express my consent to the essence of the quote above. It was one of my
motivations to write this paper to find out whether the scientific literature
contains any explanation of the textbook approaches mentioned here. It was
a real surprise for me to find out that teaching logical introductory courses
and doing the science of logic do not go hand in hand in this aspect. Hence,
the problem of searching for the well-foundedness of pedagogical approaches
arises. And its solution certainly needs employing modern logical methods
from the scientific literature, i. e., it needs using a sledgehammer to crack
a nut. As a result, as the readers find out below, it is not the case that
each pedagogical approach under discussion is well-founded, i. e., it was
not completely worthless to crack the pedagogical nut with the scientific
sledgehammer. On the other hand, while solving the problem, I came up
with the idea to extend this impractical pedagogical approach as much
as possible. By not straying far from the standard propositional language,
I want to go beyond classical logic without falling into inconsistency. To
this end, the main result of this paper— some supraclassical probabilistic
entailment relation— is proposed.

The paper is structured as follows. In Section 2, I expose a supraclassical
probabilistic entailment relation, where a conditional probability is a primi-
tive. In Section 3, this relation is classified on certain nomenclatures found
in the literature. Section 4 discusses some closely related alternatives to my
approach. Section 5 summarizes the paper and outlines future research.

2. A SUPRACLASSICAL PROBABILISTIC ENTAILMENT RELATION
In this section, I first list Leblanc’s probability axiomatization (Leblanc,

1983) and then define an original probabilistic entailment relation p≈, where
a primitive is a binary probability and a unary probability is therefore
definable via the former. To this effect, I employ a mechanical method
of truth tables and an approach to plausible reasoning that relies upon
Kolmogorov’s probability theory (Keynes, 1921; Kolmogorov, 1956; Lorenz
et al., 2019, Carnap, 1962).
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Unless specified otherwise, henceforth I fix some standard language L of
CPL over the standard alphabet with the conventional connectives and
the notion of a formula. The letters A,B,C run over formulae and Γ runs
over sets of formulae as usual. CPL is defined with Tarski’s T, F -semantics,
the standard definitions of satisfiable, valid, contradictory formulae and
entailment relation |=. By default,> (⊥) denotes a fixed valid (contradictory)
formula rather than the “verum” (“falsum”) constant, as usual. What is
unusual is the following
Definition 2.1. A is said to be plausible iff it is satisfiable and invalid.

In what follows, I employ propositional parts of certain axiomatizations of
the unary and binary probability measures P whose provisions are based on
(Popper, 1955) and thoroughly discussed in (Leblanc, 1983: 87–88, 107–109,
accordingly).
Definition 2.2. (Popper-Leblanc’s unary probability) The probability
measure of B (denoted by P (B)) is a one-place total function which satisfies
the following provisions:

1. 0 ≤ P (B),
2. P (¬(B ∧ ¬B)) = 1,
3. P (B) = P (B ∧A) + P (B ∧ ¬A),
4. P (B) ≤ P (B ∧B),
5. P (B ∧A) ≤ P (A ∧B),
6. P (B ∧ (A ∧ C)) ≤ P ((B ∧A) ∧ C).
Textbook knowledge has the following

Remark 2.3. P (¬B) = 1− P (B) follows from the axioms in Definition 2.2.

Definition 2.4. (Leblanc’s binary probability) The probability measure of
B given A (denoted by P (B/A)) is a total two-place function which satisfies
the following provisions:

1. There are a statement B and a statement A such that P (B/A) 6= 1,
2. 0 ≤ P (B/A),
3. P (B/B) = 1,
4. If there is a statement C such that P (C/A) 6= 1, then P (¬B/A) =

1− P (B/A),
5. P (B ∧A/C) = P (B/A ∧ C) · P (A/C),
6. P (B ∧A/C) = P (A ∧B/C),
7. P (B/A ∧ C) = P (B/C ∧A).
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Throughout the paper, I employ Γ to be {A1, . . . , Ak}, k 6= 0. Hence,∧
k
i=1Ai denotes any conjunction consisting of A1, . . . , Ak, where the con-

juncts are ordered and associated arbitrarily.
Definition 2.5. A binary probability of B given A1, . . . , Ak, k 6= 0, is
determined via a joint truth table of A1, . . . , Ak, B as follows, where n is
the number of its rows simultaneously containing T , for each A1, . . . , Ak,
and m, m ≤ n, is the number of its rows simultaneously containing T , for
each A1, . . . , Ak and B:

� P (B/
∧k

i=1 Ai) = 1, if n = 0;
� P (B/

∧k
i=1 Ai) =

m

n
, otherwise.

The readers easily determine that P (p/q) = 1
2 = P (p/>) and P (p/⊥) = 1.

Note that P (⊥/⊥) = 1.
Remark 2.6. The readers might not have found the first clause in Defini-
tion 2.5 anticipated because it leads straightforwardly to an informal and
counter-intuitive fact that an impossible event makes any event certain.
I refer the readers to (the discussion about) Definition 2.12 below: in short,
I purportedly want to have a probability measure of this kind because it
could serve as the basis of a supraclassical nontrivial probabilistic entailment,
i. e., an entailment that generalizes CPL-entailment at any triviality-free
cost.
The following lemma justifies Definition 2.5.
Lemma 2.7. Definition 2.5 meets the provisions of Definition 2.4.
Proof. Let me employ the notation r(A) meaning that in a truth table for
A, r is a number of rows containing T for A.

P (p/q) = 1
2 proves Provision 1. Provision 2 follows from P (⊥/>) = 0, the

totality of P and the non-negativity of the numerator and denominator in the
respective fraction. P (p/p) = P (>/>) = P (⊥/⊥) = 1 proves Provision 3.
Under the if -clause in Provision 4, A is not ⊥.2 Hence, r(¬B,A)

r(A) + r(B,A)
r(A) =

r(¬B,A)+r(B,A)
r(A) . Note that for any row in a truth table, where A is true,

either ¬B, or B is true. Hence, r(¬B,A)+r(B,A) = r(A). In order to prove
Proposition 5, note that r(A∧C,B)

r(A∧C) · r(A,C)
r(C) = r(A∧C,B)

r(C) because r(A ∧ C) =

r(A,C). Hence, r(A∧C,B)
r(C) = r(B∧A,C)

r(C) because r(A ∧ C,B) = r(B ∧ A,C).
Provisions 6 and 7 are provable because r(B∧A) = r(A∧B) and r(C∧A) =
r(A ∧ C), accordingly.

2In this case, P (B/⊥) = P (¬B/⊥) = 1.
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A unary probability is traditionally defined via the binary probability.
Definition 2.8. An unary probability is as follows:

P (B) = P (B/>).

Remark 2.9. A shortcoming of Definition 2.8 is that the underlying language
must be able to express a tautology, which is not the case for some languages
({∧}, for example).

It is easy to see that
Lemma 2.10. Definition 2.8 meets the provisions of Definition 2.2.

Definition 2.5 could be equivalently reformulated in the traditional “unary
probability” way now. It is worth noting that it lacks the usual problem
connected with division by zero.
Definition 2.11. (An “unary-probability-style” formulation of Defini-
tion 2.5) Following Definition 2.8, a binary probability of B given A1, . . . , Ak,
k 6= 0, is determined via a joint truth table of A1, . . . , Ak, B as follows, where
n is the number of its rows simultaneously containing T , for each A1, . . . , Ak,
and m, m ≤ n, is the number of its rows simultaneously containing T , for
each A1, . . . , Ak and B:

� P (B/
∧

k
i=1Ai) = 1, if n = P (

∧
k
i=1Ai) = 0;

� P (B/
∧

k
i=1Ai) =

m
n =

P ((∧k
i=1Ai)∧B)

P (∧k
i=1Ai)

, otherwise.

The readers can easily determine that P (p) = P (p/>) = 1
2 , P (⊥) =

P (⊥/>) = 0, and P (p → p/>) = 1.
A probabilistic entailment relation between Γ and B (denoted by Γ p≈ B)

as well as p≈-validity is defined as follows.
Definition 2.12. Γ p≈ B iff 1

2 < P (B/
∧k

i=1 Ai) ≤ 1.3 In particular, p≈ B
iff P (B/>) = 1.

The readers can easily determine that P (p) = P (p/>) = 1
2 , P (⊥) =

P (⊥/>) = 0, and P (p → p/>) = 1. that p, q p≈ p → q, p≈ p → p, and
6p≈ p → q. Notice that p 6p≈ q and p p≈ q ∨ r.

Before investigating the properties of p≈, let me consider some argu-
ments contra the criterion 1

2 < P (B/
∧k

i=1 Ai) ≤ 1. According to Douven,
(I slightly unify the original notation; the italic is not mine):

Formally, the intuition that if E is to qualify as evidence for H, E should make
H probable, or very probable, would come down to imposing the requirement

3The notation P (B/
∧k

i=1 Ai) ∈ ( 1
2
, 1) is employed, too.
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that P (H/E) be above some specified threshold value t, which one might take to
be .5 or even .9 or still higher (though it would be wrong to require that t = 1,
as surely I do not pretheoretically consider E to be evidence for H only if E
makes H certain) (Douven, 2011: 487–488).

In a later paper, the thesis that the target criterion is wrong, gets the
consensus gentium flavor (I slightly unify the original notation; the italic
is not mine; the boldface is mine):4

Some have said that the Bayesian notion of evidence fails to completely capture
my intuitive notion of evidence. What I mean when I say that A is evidence for
B is— according to these authors— not just that A makes B more probable, but
also that A makes B highly probable. Formally, A is evidence in this strengthened
sense iff (i) P (B/A) > P (B) and (ii) Pr(B/A) > θ, for some value θ close, but
unequal, to 1. (Different authors hold different views about what the threshold
value should be; but all agree […] that 0, 5 ≤ θ < 1) (Douven, 2014: 264).

As seen from the quotes above, the criterion 1
2 < P (B/

∧
k
i=1Ai) ≤ 1 in

Definition 2.12 contains two “abnormalities”: 1
2 < P (B/

∧
k
i=1Ai) rather than

1
2 ≤ P (B/

∧
k
i=1Ai) and P (B/

∧
k
i=1Ai) ≤ 1 rather than P (B/

∧
k
i=1Ai) < 1.

With regard to the latter, it is in line with my approach to generalize
CPL in terms of its entailment relation as nontrivially as possible (see
Remark 2.6 above).

Hence, I purportedly consider an event which makes another event certain
as a kind of evidence. On the other hand, probability theory allows for
events whose probability measures equal to 1: hence, classical valid formulae
turn out to be natural analogs of such events. The former “abnormality” has
a purely formal justification: if 1

2 ≤ P (B/
∧

k
i=1Ai) were the criterion, then it

would be the case that p p≈ q, due to P (p/q) = 1
2 . And this is an entailment

one would certainly try to avoid: any event follows from any other event.5

Let me investigate the properties of p≈. As purportedly intended, p≈ is
a generalization of |=:

Lemma 2.13. If Γ |= B, then Γ p≈ B. In particular, if |= B, then p≈ B.

4A detailed analysis of this passage is in subsection 3.1 below.
5I notice that this entailment does not hold for the two probabilistic entailment relations

that Douven analyzes thoroughly: one could easily assign the respective probabilities to different
rows in a truth table for the target entailment. In my approach— let me stress it again— the
probabilities of all the rows are equal. For example, in the case of 3 variables, a probability of
each row is 1

8
.
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Proof. By the definition of |=, if Γ |= B, then P (B/
∧

k
i=1Ai) = 1. Hence,

Γ p≈ B. In order to prove that if |= B, then p≈ B, one employs the fact that
by the definition of |=, A |= B iff |= B, given P (A) = 1.

Corollary 2.14. There are Γ, B such that Γ p≈ B and Γ 6|= B.
Proof. p ∨ q p≈ q and p ∨ q 6|= q.6

Here some basic properties of p≈ are explored. A more detailed study that
classifies p≈ on the other probabilistic entailments is in Chapter 3 below. It
is crucial to remember the notation r(A,B): in a joint truth table for A
and B, r is the number of rows containing T simultaneously for A and B.
Lemma 2.15. p≈ is reflexive, contractive, permutative, and neither sym-
metrical nor transitive nor monotonic.

Proof. A p≈ A follows from P (A/A) = 1.
A,A p≈ C iff A p≈ C follows from r(A) = r(A,A).
A,B p≈ C iff B,A p≈ C follows from r(A,B) = r(B,A).
It is not symmetrical due to p p≈ > and > 6p≈ p.7
It is not transitive due to both p p≈ p ∨ q and p ∨ q p≈ q, but p 6p≈ q.8
It is not monotonic due to p ∨ q p≈ p, but ¬p, p ∨ q 6p≈ p.9

It is only a weak form of inconsistency called (CNC) and considered on
page 225 below that holds for p≈. In this aspect, p≈ behaves the same as |=.

The nontriviality of p≈ comes from Milne’s argument (Milne, 2000: 311),
too:

As is well known, the following two principles are incompatible:
1. if h entails e then e confirms h, at least when h is not logically false and e is

not logically true;
2. if e confirms h and h entails h′ then e confirms h′, at least when h′ is not

logically true.
Since e&e′ entails both e and e′, it follows from (1) and (2) that any logically
contingent statement confirms any other with which it is logically compatible.

p∧ q |= p, but p 6p≈ p∧ q, due to P (p∧ q/p) = 1
2 . Hence, (1) fails. To show

the failure of (2), let me notice that h |= h′ implies h p≈ h′, by Lemma 2.13.
In order to derive e p≈ h′ from e p≈ h and h p≈ h′, one needs p≈ to be
transitive, which is not the case by Lemma 2.15.

6P (q/p ∨ q) = 2
3
.

7P (>/p) = 1 and P (p/>) = 1
2
.

8P (p ∨ q) = 3
4
, P ((p ∨ q)/p) = 1, and P (q) = 1

2
, P (q/(p ∨ q)) = 2

3
, but P (q/p) = 1

2
.

9P (p) = 1
2
, P (p/p ∨ q) = 2

3
, but P (p/(¬p ∧ (p ∨ q))) = 0.
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3. CLASSIFYING p≈
The purpose of this chapter is to deepen the present investigation of p≈

by two means. On the one hand, I am to find out more properties than the
Gentzenian ones from Lemma 2.15 and, on the other hand, to classify the
place of p≈ among the nonmonotonic and/or nontransitive logics. I believe
that such semantic analysis would allow me to come up with another paper
devoted to an adequate syntactic axiomatization of p≈. For this purpose,
I employ Douven’s analysis of a similar probabilistic entailment (Douven,
2014) as well as the shopper’s guide by Hlobil to choosing your nonmonotonic
logic (Hlobil, 2018) and Cobreros et al.’s entailments for tolerant reasoning
(Cobreros & Egré & Ripley, 2021).

3.1. THE DOUVEN PROPERTIES

In (Douven, 2014), Douven provides a detailed analysis of two notions of
evidential support, the Bayesian A _B C and its Strengthen case A _S C.
Note that both _B and _S do not belong to the object-language, i. e.,
neither A _B C, nor A _S C are conditionals.10 The former is short for
P (C|A) > P (C), where (I unify Douven’s notation) “C _B A means that
A is evidence in the Bayesian sense for C 〈. . .〉 P designates a specific
(but unspecified) person’s degrees-of-belief function, to which all sentences
containing the symbol _B are taken to implicitly refer” (Douven, 2014:
263). The latter is short for (i)P (C|A) > P (C) and (ii) 0, 5 ≤ P (C|A) < 1,
where (ii) is the commonly accepted interval to a threshold value such that
A makes C highly probable, not just more probable.11 It is in this sense
that A _S C strengthens A _B C. For the reasons of this paper, I will
not discuss A _B C and henceforth, _ means _S only.

The main result of Douven’s paper is that out of 33 principles (see Table 1
in ibid.: 265), the below 11 ones hold for A _ C, where ` is classical
derivability relation and ANT, CNC, M2, M3, MOD, RCE, RCEA, RCEC,
REF, WAND, XOR are their Douven labels.12

� (ANT) Whenever A _ B, then A _ (A ∧B);
� (CNC) Whenever A 6` ⊥, A _ B and A _ B, then ⊥;
� (M2) Whenever A _ (B ∧ C) and A _ (B ∨ C), then A _ B or
A _ C;

10For conditionals, see, for example, (Flaminio, Godo, Hosni, 2020).
11I discuss this passage preliminary when I clarify Definition 2.12 above.
12Douven deciphers some of them (for example, he attributes M2–M3 to Milne, 2000) and

also mentions their alternative labels. I do not replace his A-notation with my ¬A-notation.
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� (M3) Whenever ` B ∧ C, A _ B and A _ C, then A _ (B ∨ C);
� (MOD) Whenever A _ A, then B _ A;
� (RCE) Whenever ` A ⊃ B, then A _ B;
� (RCEA) Whenever ` A ≡ B, then (A _ C) ≡ (B _ C);
� (RCEC) Whenever ` A ≡ B, then (C _ A) ≡ (C _ B);
� (REF) A _ A;
� (WAND) Whenever A _ B and A ∧ C _ ⊥, then A _ (B ∧ C);
� (XOR) Whenever ` A ∧B, A _ C and B _ C, then (A ∨B) _ C.

Notice that Douven’s proofs are not automatically applicable to p≈. In
fact, it turns out to be possible in the case of (XOR) only. On the other
hand, I highlight every time I employ Douven’s proofs.

To prove (ANT) one needs a special case of axiom 5 in Definition 2.4:
P (A ∧ B)/A = P (A/B ∧ A) · P (B/A) and the fact that B ∧ A |= A. The
latter implies B ∧ A p≈ A, by Lemma 2.13, with P (A/B ∧ A) = 1.

To prove (CNC) one needs axiom 4 in Definition 2.4 that guarantees the
unsatisfiability of the “whenever” clause of (CNC).

A stronger version of (M2) which I label (M2str) is valid for p≈:
(M2str) whenever A p≈ B ∧C, then A p≈ B and A p≈ C. W. l. g., I assume

that P (A) 6= P (⊥): otherwise, A p≈ B and A p≈ C hold via Lemma 2.13.
1. A p≈ B ∧ C—given
2. P (B ∧ C/A) ∈ ( 12 , 1]— from 1 by Definition 2.12
3. P ((B∧C)∧A)

P (A) ∈ ( 12 , 1]— from 2 by Definition 2.11
4. P ((B∧C)∧A)

P (A) ≤ P (A∧C)
P (A) —by truth-table calculations13

5. P (A∧C)
P (A) ∈ ( 12 , 1]— from 3 and 4 by math

6. A p≈ C— from 5 by Definition 2.11
7. P ((B∧C)∧A)

P (A) ≤ P (A∧B)
P (A) —by the above truth-table calculations

8. P (A∧B)
P (A) ∈ ( 12 , 1]— from 3 and 7 by math

9. A p≈ B— from 8 by Definition 2.11
(M3) is p≈-invalid. To show its invalidity, let me follow Douven and apply

the probability law P (B/A) + P (C/A) = P (B ∧ C/A) + P (B ∨ C/A)14

because A p≈ B, A p≈ C, and ` B ∧ C. Hence, P (B ∨ C/A) > 1 which
is absurd.

13In a joint truth-table for A,B,C, if one takes into account only the rows, where A is
true, then the number of rows where B ∧ (C ∧A) is true does not exceed the number of rows
where A ∧ C is true.

14Note that I do not argue Douven’s proof to be erroneous.
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However, a modified version of (M3) which I label (M3mdf ) is p≈-valid:
(M3mdf ) ` B ∧ C, A _ B, then A _ (B ∨ C).15
A proof of (M3mdf ) is essentially the Douvenian one of (M3) (Douven,

2014: 271–272), who cites Milne, in turn (Minle, 2000: 316). W. l. g., I assume
that P (A) 6= P (⊥): otherwise, A _ (B ∨ C) holds via Lemma 2.13.

(MOD) is proven via P (A/A) = 0 (Douven, 2014: 273) unless P (A) 6=
P (>). In that case, however, P (B/T ) = 1.

(RCE) is proven via |= A ⊃ B ⇔ A |= B and Lemma 2.13.
(RCEA) and (RCEC) are proven via Lemma 2.13.
(REF) is proven via Lemma 2.15.
To prove (WAND) let me notice that A ∧ C p≈ ⊥ ⇔ P (A ∧ C) = P (⊥).

There are three cases: (1) P (A) = P (⊥), (2)P (¬C) = P (⊥), and (3)
P (A ∧ C) = P (⊥), whilst neither (1), nor (2).

(1) implies ⊥ p≈ B ∧ C that holds, by Lemma 2.13. (2) implies P (C) =
P (>). Hence, by CPL, (WAND) reduces to the trivially valid formulation:
whenever A p≈ B and ⊥ p≈ ⊥, then A p≈ B. At last, (3) implies P (A) = P (C).
Hence, by CPL, (WAND) reduces to the following formulation: whenever
A p≈ B and A ∧ A p≈ ⊥, then A p≈ (B ∧ A). By Lemma 2.13 and axiom 7
from Definition 2.4, it then reduces to the above-proven (ANT): whenever
A p≈ B, then A p≈ (A ∧ B).

(XOR) is provable by Douven (Douven, 2014: 276).
Now let me consider the two principles that Douven highlights: they, and

only they, are both _B-valid and _S-invalid.
� (Contraposition) Whenever A _ B, then B _ A;
� (M1) Whenever A _ B and A _ C, then A _ (B ∧ C) or A _
(B ∨ C).

(Contraposition) fails for p≈, too: > p≈ (p ∧ q), but p ∧ q 6p≈ ¬>.16
However, (M1) is valid for p≈. In fact, its stronger version, which is labeled

(M1str) is already valid:
(M1str) whenever A p≈ C, then A p≈ B ∨ C.17

1. A p≈ C—given
2. A 6p≈ B ∨ C—assuming for the sake of contradiction
3. P (A) 6= 0— from 2 by Definition 2.12

15Another variant of (M3str) is ` B ∧ C, A _ C, then A _ (B ∨ C). Its proof is
analogous to the one below.

16P ((p ∧ q)/>) = 3
4
and P (>/p ∧ q) = 0.

17Another variant contains A p≈ C, and its proof is analogous to the one below.
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4. P (C) 6= 1— from 2 by Definition 2.12
5. P (C/A) ∈ ( 12 , 1]— from 1 by Definition 2.12
6. P (B ∨ C/A) < 1

2 — from 2 by Definition 2.12
7. P ((B ∧ C)/A) < 1

2 — from 6 by CPL
8. 1− P (B ∧ C/A) < 1

2 — from 3 and 7 by axiom 4 in Definition 2.4
9. 1

2 < P (B ∧ C/A)— from 8 by math
10. 1

2 < P (B/C ∧A) · P (C/A)— from 9 by axiom 5 in Definition 2.4
11. 1

2 <
(
1−P (B/C ∧A)

)
·
(
1−P (C/A)

)
—from 3, 4, 10 by axiom 4 in

Definition 2.4
12. P (B/C ∧ A) − P (B/C ∧ A) · P (C/A) < 1

2 − P (C/A)— from 11 by
math

13. x− xa < 1
2 − a— from 12 by obvious substitutions18

14. x(1− a) < 1
2 − a— from 13 by math

15. x <
1
2−a

1−a — from 14 by math
16. P (B/C ∧A) < 0— from 15 and 5
17. P (B/C ∧A) ∈ [0, 1]—by Lemma 2.7

Last but not least, to check p≈-validity of the 20 remaining Douvenian princi-
ples, which are both _B-invalid and _S-invalid, deserves a separate paper.

3.2. THE HLOBILIAN SHOPPER’S GUIDE
TO NONMONOTONIC LOGICS

In (Hlobil, 2018: 3), Hlobil presents an exhaustive menu of nonmonot-
onic logics:

You cannot get a nonmonotonic logic without having to give up some principles
that many find desirable. The good news is that you get a choice regarding which
principles you want to give up. […] I will go through some of these choices. The
result will be an exhaustive (but not exclusive) classification of nonmonotonic
logics into seventeen types.

It might be helpful to refer to that paper for details, especially to the
tree of choices in Figure 1 (Hlobil, 2018: 5).19 For the reasons of the current
study, it would make sense to list Hlobil’s choices and specify p≈ on them (for

18Note that P (B/C ∧A) is an unknown in the inequality and hence denoted by x whilst
by 5, P (C/A) is a parameter and hence denoted by a.

19The full tree is not included here, but a direct reference to Hlobil’s paper on the web has
been provided in References below for convenience.
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unifying reasons, I change the original notation and, if any, add [Douven’s
labels] from (Douven, 2014):20

� (CO) If A ∈ Γ, then Γ p≈ A;
� (RE) [REF] A p≈ A;21
� (Mixed-Cut) If Γ p≈ A and ∆, A p≈ B, then Γ,∆ p≈ B;
� (DDT) If Γ p≈ A → B, then Γ, A p≈ B;
� (CT) [CT] If Γ p≈ A and Γ, A p≈ B, then Γ p≈ B;
� (PEM) Γ p≈ A ∨ ¬A;
� (CM) [Cmon] If Γ p≈ A and Γ p≈ B, then Γ, B p≈ A;
� (PF) [SDA] Γ, A ∨B p≈ C iff Γ, A p≈ C and Γ, B p≈ C;
� (DI) If Γ, A ∨ (B ∧ C) p≈ D, then Γ, (A ∨B) ∧ (A ∨ C) p≈ D;
� (FU) Γ, A ∧B p≈ C iff Γ, A,B p≈ C.

Lemma 3.1. CO, RE, PEM, FU, and DI are the only p≈-valid principles
from the above list.
Proof. For the invalidity of CT, CM, PF, and FU see (ibid.: 270, 268,
275–276, 266–267, respectively). The from-left-to-right part of DDT fails if
r p≈ p → q and r, p 6p≈ q.22 Mixed-Cut fails if r, p p≈ p ∨ q and r, p ∨ q p≈ q,
but r, p 6p≈ q.23 The p≈-validity of CO follows both from the fact that if
A ∈ Γ, then Γ |= A, and Lemma 2.13. The p≈-validity of RE follows
from Lemma 2.15. The p≈-validity of PEM follows from Γ |= A ∨ ¬A and
Lemma 2.13. The p≈-validity of FU follows from the truth-table fact that its
rows, where A∧B is true, are the same, where both A and B are true. At last,
the p≈-validity of DI follows from P (A∨(B∧C)) = P ((A∨B)∧(A∨C)).
Lemma 3.1 indicates that p≈ is in 2 out of the 17 Hlobil types specified in
the quote from the beginning of this subsection. In the tree in Figure 1
(Hlobil, 2018: 5),24 the 3 branches having the node rej–CO are discarded for
the reason that CO is p≈-valid. The 6 branches having the node rej–PEM
are discarded for the reason that PEM is p≈-valid. Each branch having the
end-node rej–FU or the end-node rej–DI is discarded for the reason that
FU is p≈-valid or DI is p≈-valid, respectively, which leaves 4 branches in
total. For the reason of the p≈-invalidity of CM,25 the 2 branches having

20As in the case of Douven, I refer to the Hlobil paper for decoding the labels below.
21Note that in Douven’s [REF], A is plausible.
22P (p → q/r) = 3

4
and P (q/r, p) = 1

2
.

23P (p ∨ q/r, p) = 1, P (q/r, p ∨ q) = 2
3
, and P (q/r, p) = 1

2
.

24See footnote 19 above.
25Note that Hlobil’s choice branchings are not mutually exclusive: rejecting a principle does

not inherently mean the rejection of its “counterpart”.



VOL. 7, NO. 4] A SUPRACLASSICAL PROBABILISTIC ENTAILMENT RELATION 229

the end-node rej–PF on the third level [C3] are discarded. As a result, only
two types remain: the branch having the nodes rej–MO, rej–Mixed-Cut,
rej–CT, rej–CM, rej–PF and the branch having the nodes rej–MO, rej–
Mixed-Cut, rej–DDT, rej–CM, rej–PF. They are obviously reducible to the
unique p≈-friendly type: the branch having the nodes rej–MO, rej–Mixed-
Cut, rej–CT, rej–DDT, rej–CM, rej–PF.26

So, what is p≈ even if the Hlobil classification answers this question apa-
gogically only? I answer this question by employing the four nonmonotonic
logics that Hlobil mentions explicitly. The p≈-validity of CO implies it is
not a relevance-like logic like R (Anderson & Belnap, 1975) or Hlobil’s
NM-LR.27 The p≈-invalidity of CT implies it is not a cumulative logic like
KLM (Kraus & Lehmann & Magidor, 1990). At last, the p≈-invalidity of
DI implies it is not like Hlobil’s NM-G3cp.28 With regard to the motivat-
ing choices that Hlobil discusses (Hlobil, 2018: 6–7), p≈ prioritizes staying
supraclassical over rejecting as few structural principles as possible. On
the other hand, p≈ does not make a choice between rejecting principles
regarding the behavior of connectives and rejecting structural principles:
p≈ fails PF and DDT and hence → and ∨ do not behave properly (but it
is not the case for ∧ because FU is p≈-valid) as well as p≈ anticipatedly
fails Mixed-Cut to avoid the supraclassical trivialization discussed at the
end of Section 2. As a result, p≈ is not suitable for inferentialism-friendly
nonmonotonic logics such as NM-G3cp and NM-LR which are Hlobil’s
favorite kind of nonmonotonic logic.29

3.3. COBREROS ET AL.’S PRAGMATIC-TO-TOLERANT
ENTAILMENT FOR TOLERANT REASONING

Furthermore, it would be beneficial for this research to turn to Cobreros
et al.’s nonmonotonic and/or nontransitive approaches to tolerant reasoning

26According to Hlobil (Hlobil, 2018: 5), “Figure 1 should be read as follows: Every nonmo-
notonic logic must reject all the principles that occur on at least one complete branch of the
tree. […] Of course, a logic can always reject more principles than what the tree in Figure 1
requires. Hence, a logic can belong to several of my seventeen types”.

27The latter is a nonmonotonic variant of Bimbo’s distribution-free relevance logic LR
(Bimbo, 2015).

28NM-G3cp is a nonmonotonic variant of Troelstra and Schwichtenberg’s classical sequent
calculusG3cp in which the structural rule of weakening is absorbed (Troelstra, Schwichtenberg,
2000). Hlobil also employs the name G3cp-NM.

29He proposes sequent-style axiomatizations for two of them (Hlobil, 2018: 11, 13) which pre-
serve Makinson’s result that nonmonotonic entailment relation is not closed under substitution
(Makinson, 2003).
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(Cobreros & Egré & Ripley, 2021: 682) which (appropriate for the topic of this
paper) are aimed at disproving the following thesis (the italic is original):

According to one influential view of the sorites paradox, the tolerance principle—
the constraint whereby if someone is tall, for example, then someone whose
height is imperceptibly shorter is tall too— is an unsound rule of reasoning (see
Williamson, 1994).

To that end, the authors propose three specific consequence relations,
with one of them (called pragmatic-to-tolerant consequence and denoted by
|=prt as well as its updated version called Pragmatic-to-tolerant consequence
and denoted by |=Prt) being reflexive, contractive, nonmonotonic, and
nontransitive, i. e., it is closer to p≈ than the other two. Despite the fact
that analyzing Cobreros et al.’s approaches exceeds the scope of this paper
and the fact that formulating the tolerance principle needs a first-order
language, it may well be prospective for further applications.

It is not the case that all classically valid modes of reasoning are |=Prt-
valid as in the case of p≈.30 The reason to update |=prt to |=Prt is a flaw
of the former in that it separates the premisses and their conjunction, i. e.,
p,¬p |=prt q, but p ∧ ¬p 6|=prt q.31 With regard to p≈, it is simple to confirm
that the target separation is not the case for p≈: A,¬A p≈ B iff A∧¬A p≈ B,
due to truth-table calculations. I highlight two Prt-features. The first one is
A,¬A 6|=Prt B which is p≈-valid, on the other hand, because the explosion is
|=-valid. The second Prt-feature— the standard ∧-elimination entailments
A ∧ B |=Prt A and A ∧ B |=Prt B—holds for p≈, too.

4. RELATED WORK
In this section, the main focus lies with related papers that share the

approach of the present study in that all the 2n truth table distributions
for a formula containing n distinct propositional variables are equiprobable.
Hence, a classic approach by Carnap, for example, is beyond the scope of
this section (Carnap, 1962). Section 4.1 considers the approach by Bocharov
and Markin (Bocharov & Markin, 2008) who avoid employing the principle
of reverse deduction which is considered together with two approaches that
apply it in Section 4.2. Section 4.2.1 considers the approach by Voishvillo
and Degtyarev (Voishvillo & Degtyarev, 2001) whilst Section 4.2.2 considers

30Note that another entailment proposed there under the name of strict-to-tolerant entail-
ment validates all classical modes of reasoning.

31It is not a |=prt-specific feature. For example, see Weir’s nontransitive trivalent logic of
neo-classical entailment NC3 (Weir, 2013). And this feature troubles him in no way at all.
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Ivlev’s method (Ivlev, 2008; 2015). This Section ends with a summary
table that contains a comparative analysis of the classical and the four
probabilistic entailments of this paper. While exposing the approaches in
question, I unify the original notations.

4.1. AN APPROACH THAT IS NOT BASED
ON THE PRINCIPLE OF REVERSE DEDUCTION

Definition 4.1. (Bocharov & Markin, 2008: 450–451) Let n, n > 0, be
the total number of rows in a truth table for A and let m,m ≤ n,m ≥ 0,
be the number of rows in this truth table, where A is true. Then an unary
probability P ∗ of A is determined as follows:

P (A) =
m

n
.

It is clear that
Lemma 4.2. Definition 4.1 meets the provisions of Definition 2.2.
Definition 4.3. (ibid.: 451) A binary probability of B given A1, . . . , Ak,
k 6= 0 (denoted by P ∗(B/

∧
k
i=1Ai)), is determined via a joint truth table of

A1, . . . , Ak, B as follows, where P (
∧

k
i=1Ai) 6= 0:

P (B/

k∧
i=1

Ai) =
P ((

∧k
i=1 Ai) ∧B)

P (
∧k

i=1 Ai)
.

It is clear that
Lemma 4.4. Definition 4.3 meets the provisions of Definition 2.4.

A probabilistic entailment relation between Γ and B (denoted by Γ p≈∗
B)

is defined as follows.
Definition 4.5. (ibid.: 452) Γ p≈∗

B iff P (B) < P (B/
∧k

i=1 Ai).

Let me move on to the investigation of the properties of p≈∗. In contrast
to p≈ (Lemma 2.13), p≈∗ is not a generalization of |=:

Lemma 4.6. There are Γ, B such that Γ p≈∗
B and Γ 6|= B. On the other

hand, there are Γ, B such that Γ 6p≈∗
B and Γ |= B. In particular, there is

no A such that p≈∗
A.

Proof. A proof of Corollary 2.13 contains an example that proves the first
part of this Lemma. p |= > and p 6p≈∗ > prove its second part. At last, 6p≈∗

B,
for any B, follows from the nonemptiness of Γ in Definition 4.5.
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Lemma 4.7. p≈∗ is symmetric, contractive, and permutative, i. e., if A p≈∗

B, then B p≈∗
A; if A,A p≈∗

B, then A p≈∗
B; if A,C p≈∗

B, then C,A p≈∗
B,

respectively.
p≈∗ is not reflexive, monotonic, and transitive, i. e. A 6p≈∗

A; if A p≈∗
B,

then A,C 6p≈∗
B; if A p≈∗

B and B p≈∗
C, then A 6p≈∗

C, respectively.

Proof. The first part of this Lemma derives straight from Definition 4.5. As
regards the second part of this Lemma, proof of Lemma 2.15 contains the
respective examples that prove the lack of both monotonicity and transitivity.
The lack of reflexivity follows from > 6p≈∗ > or ⊥ 6p≈∗ ⊥.

Despite p≈∗ not being reflexive, I highlight the following easy-provable
(see also Definition 2.1 above)

Lemma 4.8. A p≈∗
A iff A is plausible.

Lemma 4.9. p≈∗ is inconsistent, i. e., it is not the case that A p≈∗
B and

A p≈∗ ¬B.

Proof. (On contrary)
1. A p≈∗

B and A p≈∗ ¬B – given
2. A p≈∗

B – from 1
3. A p≈∗ ¬B – from 1
4. P (B) < P (A∧B)

P (A) – from 2 by Definition 4.5
5. P (¬B) < P (A∧¬B)

P (A) – from 3 by Definition 4.5
6. 1− P (B) < P (A∧¬B)

P (A) – from 5 by Remark 2.3
7. P (B) ∗ P (A) < P (A ∧B) – from 4
8. P (A)− P (B) ∗ P (A) < P (A ∧ ¬B) – from 6
9. P (A)− P (A ∧ ¬B) < P (B) ∗ P (A) – from 8

10. P (A)− P (A ∧ ¬B) < P (A ∧B) – from 7, 9
11. P (A) < P (A ∧B) + P (A ∧ ¬B) – from 10
12. P (A) < P (A) – from 11 by axiom 3 in Definition 2.2
13. it is not the case that A p≈∗

B and A p≈∗ ¬B – from 12

Due to Definition 4.5, A in Lemma 4.9 is readily generalized to Γ. This
is avoided for the sake of simplicity.

Another key thing worth noting is the form of inconsistency in Lemma 4.9
which is stronger than the p≈-one discussed on pages 223, 225 above.
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4.2. TWO APPROACHES BASED ON THE PRINCIPLE
OF REVERSE DEDUCTION

Next, two mutually related approaches to plausible entailment that are
based on the so-called principle of reverse deduction will be analyzed: see
quotes on pages 233 and 233 below.
4.2.1. Voishvillo and Degtyarev’s Approach. Voishvillo and Degt-

yarev put it as follows (the quote is changed cosmetically):32

It is essential to pay attention to the fact that if B |= A(A deductively follows from
B), then A p≈V D B. The opposite is not true, though. This way of establishing
inductive entailment between A and B on the basis of deductive entailment
between B and A is said to be the principle of reverse deduction. Additionally,
for the relation of deductive entailment that is under consideration here, one
excludes paradoxical cases of the relation […], i. e., the cases when A is a negation
of some logical law of the system under consideration or when B is some logical
law […] (Voishvillo & Degtyarev, 2001: 389).

On the previous page, they propose the following definition of plausible
entailment, which they call inductive entailment:
Definition 4.10. (ibid.: 388) A p≈V D B iff B 6|= A and P (B) < P (B/A),
where A,B are plausible.

Regretfully, there is a contradiction between the fact that “if B |= A
(A deductively follows from B), then A p≈V D B” mentioned in the quote on
page 233 and Definition 4.10. Due to the former, p p≈V D p, due to p |= p
whilst due to the latter, p 6p≈V D p.

Even if one considers Definition 4.10 rather than the fact under question
to be the proper source that explicates their account on plausible entailment,
then one cannot consider it satisfactory still. Definition 4.10 implies p≈V D

to be irreflexive, i. e., A 6p≈V D A, for any A. This property of plausible
entailment is very unlikely to have some philosophical background, let alone
that Voishvillo and Degtyarev never mention it explicitly. Notice also that
according to Lemma 4.8, p≈∗ is not reflexive rather than irreflexive, i. e.,
A p≈∗

A, for any plausible A.
4.2.2. Ivlev’s Approach. Ivlev’s approach is slightly different from

the one by Voishvillo and Degtyarev (Ivlev, 2015: 94); the quote is changed
cosmetically:
Reverse deduction is as follows. One needs to justify a sentence A. One estab-
lishes that each sentence B1, B2, . . . , Bn(n ≥ 1) follows from A or, equivalently,

32All the translations below belong to me.
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a conjunction of these sentences follows from it. Additionally, A is not contra-
dictory, whilst B1, B2, . . . , Bn are not valid. One concludes that the sentences
B1, B2, . . . , Bn support the sentence A, i. e.

A |= B1 ∧B2 ∧ . . . ∧Bn, 6|= ¬A,
6|= B1, 6|= B2, . . . , 6|= Bn

B1, B2, . . . , Bn p≈∗ A
(4.1)

In other words, Ivlev accepts the restriction for A,B to be plausible.
Thus defined, p≈∗ needs an auxiliary condition nevertheless in order

to avoid undesired plausible entailments. For example, p p≈∗ p ∧ q, due
to p ∧ q |= p. However, the former entailment states that p supports its
conjunction with an arbitrary sentence, which one could hardly accept.
Moreover, if one generalizes the previous example by conjuncting p and
a conjunction of n arbitrary sentences, then p p≈∗ p∧ (q1 ∧ . . .∧ qn) . . .), due
to p ∧ (q1 ∧ . . . ∧ qn) . . .) |= p, etc. And this example states the absurdity
that p supports any conjunction consisting of it and n arbitrary sentences.

To this end, one additionally imposes the condition which one calls positive
relevancy and which is nothing but the right-side condition of Definition 4.5:
P (A) < P (A/B).33 As a result, one obtains p≈∗ to be quite the same as p≈∗,
where two differences need to be highlighted.

p ∨ q p ∧ q
F F
T F
T F
T T

Table 1. Truth table with
crossing out for p ∨ q,

p ∧ q

p≈∗ might be determined in the same way as
p≈∗ and it can be determined differently by em-
ploying the machinery of crossing out formulae in
a truth table while calculating conditional proba-
bility (both approaches in question determine an
unconditional probability in the same way).

I take an example of calculations from (Ivlev,
2015: 95) and apply the needed changes.

p∨ q supports p∧ q, due to the fact p∧ q classically implies p∨ q. The conditional
probability of p ∧ q is determined as follows. One establishes a probability of
the proposition in question given the truth of the proposition p ∨ q, i. e., one
establishes the degree of support of the initial proposition by the proposition
p ∨ q. One builds up joint truth tables for these propositions: see Table 1.
One crosses out those rows where the proposition p ∨ q is false, i. e., one is
presupposed to have received the information about the truth of p∨ q: see Table 1.
The probability of the sentence p ∧ q/p ∨ q = 1

3
. Notation: P (p ∧ q/p ∨ q).

(It reads: the probability of p ∧ q given p ∨ q.)

33I repeat the mantra on the possibility of generalizing A to Γ.
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The second difference between p≈∗ and p≈∗ is that the former is reflexive.
Lemma 4.11. p≈∗ is reflexive, contractive, permutative, symmetrical and
neither transitive nor monotonic.
Proof. A p≈ A follows from P (A/A) = 1. The other properties are proven
in Lemma 4.7.

Lemma 4.12. p≈∗ is inconsistent, i. e., it is not the case that A p≈∗
B and

A p≈∗ ¬B.
Proof. It is analogous to the one in Lemma 4.9.

With regard to p≈∗ and p≈∗, their equality is established with the following
Lemma 4.13. A p≈∗ B iff A p≈∗

B.
Proof. It is obvious in the case from left to right. The case from right
to left holds because A 6p≈∗

B, if A or B are not plausible: (1) if A is ⊥,
then P (A) = 0; (2) if A is >, then P (B) = P (B/>); (3) if B is ⊥, then
P (B) = P (A/B) = 0; (4) if B is >, then P (B) = P (A/B) = 1.

To summarize, a comparative analysis of the four probabilistic entailments
discussed in the paper: p≈, p≈∗, p≈V D, and p≈∗ in sections 2, 4.1, 4.2.1 and 4.2.2,
respectively, is presented in Table 2, below.

The following properties hold for each probabilistic entailment in question:
permutation, contraction, and the lack of both transitivity and monotonicity.

INCONS CONPRIM SUP DEF REF SYM
|= – inapp – inapp + –
p≈ – + + 1

2
< P (B/A) ≤ 1 + –

p≈∗ + – – P (B) < P (B/A)� – +
p≈V D co nt ra di ct ion
p≈∗ + + – P (B) < P (B/A)♦ + +

Table 2. A comparison of |=, p≈, p≈∗, p≈V D, p≈∗

CONS, CONPRIM, SUP, DEF, REF, SYM mean a strong form of in-
consistency, primitiveness of a conditional probability, supraclassicality,
definition of an entailment, reflexivity, symmetricity, respectively, whilst +
and – mean the fact an entailment holds or does not hold this property; at
last, “inapp” means inapplicable.34 The entries of the p≈V D-row are filled
with “contradiction” (see page 233). The conditions � and ♦ mean A is not

34An entailment holds the property of the primitiveness of a conditional probability iff it
does not have the property of the primitiveness of an unconditional probability. The analogous
equivalence is true with respect to the strong vs. the weak forms of inconsistency.
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⊥ and A,B are plausible, accordingly. As before, the definitions of these
entailments are for the particular case, due to simplicity reasons.

5. CONCLUSION
In the paper, a nontrivial plausible probabilistic entailment relation

is proposed. Its original feature is a combination of the primitiveness of
a conditional probability, which one calculates with the method of truth
tables for CPL, and supraclassicality. Moreover, a comparison with some
closely related probabilistic entailments is provided, along with a position
on certain nomenclatures in related literature. The main topic for future
research on the surface is to set up proof-theoretic axiomatizations of each
consistent entailment discussed in the paper as well as to continue checking
the p≈-validity of the other Douven properties to whom Section 3.1 is
devoted.
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Его важной чертой является примитивность условной вероятности, которая вычисляет-
ся с помощью метода таблиц истинности для классической логики высказываний. Мы
изучаем свойства заданного отношения. В частности, мы показываем, что, будучи су-
перклассическим, т.е. все классически общезначимые формулы и выводимости имеют
место для p≈, но обратное утверждение неверно, оно нетривиально и для него имеет место
такой же вариант свойства непротиворечивости, что и для классического следования |=.
мы определяем место предложенного следования в некоторых классификациях, найден-
ных в соответствующей литературе. В частности, мы используем дювеноский анализ
некоторых вероятностных отношений следования, содержащий десятки свойств, кото-
рые являются важными для любого вероятностного отношения следования, а также хло-
биловский руководитель покупателя при выборе своего немонотонного отношения
следования, благодаря немонотонности p≈, и предложенные Кобреросом, Эгром, Рипли
и ван Руем отношения следования для толерантных рассуждений. Наконец, мы делаем
сравнительный анализ классического, предложенного и некоторых тесно связанных со
вторым отношений следования: то, что предложено В.А .Бочаровым, В.И. Маркиным,
то, что предложено Е.К. Войшвилло, М. Г. Дегтяревым, а также то, что предложено
Ю.В. Ивлевым, где два последних отношения основаны на так называемом принци-
пе обратной дедукции, который является интуитивно приемлемым способом, который
позволяет связать классическое и вероятностные отношения следования.
Ключевые слова: классическая логика, вероятностная логика, Байес, свидетельство,
следование, обратная дедукция.
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